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Can we prevent leaky updates?

DP-SGD: Clip per-example gradient + Gaussian Noise 

Emprical method: Regularization, Distillation ….

New Method: Can we reject leaky updates based on new privacy notion?
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Plausible Deniability

• Ensure each gradient update could be due to many batches. 
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Plausible Deniability-SGD
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Privacy Test

FailPass

Are there ≥ T other batches in the training set with similar gradients?

Privacy Test Bound
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PD-SGD vs DP-SGD

DP-SGD PD-SGD 

Unit of Protection Example Batch

Per-Example Clipping Yes No

Supported Loss Functions Decomposable Any

Similarities:

● Bound Membership Inference Attack Advantage

● PD-SGD can achieve (ε,δ)-DP with privacy test randomization

Differences:
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Experiments Results

Better privacy-utility trade-off

Empirical Privacy Leakage
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Experiments Results

Better privacy-utility trade-off on different datasets with different model architectures.
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Takeaways
• Introduces a novel privacy notion for private training of ML models based on 

plausible deniability and propose an algorithm (PD-SGD) for it

• Achieves better privacy-utility trade-off than other existing defenses 
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